3.815 \(\int \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} (B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\)

Optimal. Leaf size=397 \[ \frac {2 \left (-4 a^2 C+7 a b B+25 b^2 C\right ) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{105 b^2 d}+\frac {2 (a-b) \sqrt {a+b} \left (-8 a^2 C+2 a b (7 B-3 C)+b^2 (63 B-25 C)\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{105 b^3 d}+\frac {2 (a-b) \sqrt {a+b} \left (-8 a^3 C+14 a^2 b B-19 a b^2 C-63 b^3 B\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{105 b^4 d}+\frac {2 (a C+7 b B) \tan (c+d x) \sec (c+d x) \sqrt {a+b \sec (c+d x)}}{35 b d}+\frac {2 C \tan (c+d x) \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)}}{7 d} \]

[Out]

2/105*(a-b)*(14*B*a^2*b-63*B*b^3-8*C*a^3-19*C*a*b^2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),(
(a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^4/d+2/105*(a-
b)*(b^2*(63*B-25*C)+2*a*b*(7*B-3*C)-8*a^2*C)*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a
-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^3/d+2/105*(7*B*a*b-4*
C*a^2+25*C*b^2)*(a+b*sec(d*x+c))^(1/2)*tan(d*x+c)/b^2/d+2/35*(7*B*b+C*a)*sec(d*x+c)*(a+b*sec(d*x+c))^(1/2)*tan
(d*x+c)/b/d+2/7*C*sec(d*x+c)^2*(a+b*sec(d*x+c))^(1/2)*tan(d*x+c)/d

________________________________________________________________________________________

Rubi [A]  time = 1.00, antiderivative size = 397, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {4072, 4031, 4092, 4082, 4005, 3832, 4004} \[ \frac {2 \left (-4 a^2 C+7 a b B+25 b^2 C\right ) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{105 b^2 d}+\frac {2 (a-b) \sqrt {a+b} \left (-8 a^2 C+2 a b (7 B-3 C)+b^2 (63 B-25 C)\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{105 b^3 d}+\frac {2 (a-b) \sqrt {a+b} \left (14 a^2 b B-8 a^3 C-19 a b^2 C-63 b^3 B\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{105 b^4 d}+\frac {2 (a C+7 b B) \tan (c+d x) \sec (c+d x) \sqrt {a+b \sec (c+d x)}}{35 b d}+\frac {2 C \tan (c+d x) \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)}}{7 d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2*Sqrt[a + b*Sec[c + d*x]]*(B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(2*(a - b)*Sqrt[a + b]*(14*a^2*b*B - 63*b^3*B - 8*a^3*C - 19*a*b^2*C)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b
*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]
))/(a - b))])/(105*b^4*d) + (2*(a - b)*Sqrt[a + b]*(b^2*(63*B - 25*C) + 2*a*b*(7*B - 3*C) - 8*a^2*C)*Cot[c + d
*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a +
b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(105*b^3*d) + (2*(7*a*b*B - 4*a^2*C + 25*b^2*C)*Sqrt[a + b*Sec[c
+ d*x]]*Tan[c + d*x])/(105*b^2*d) + (2*(7*b*B + a*C)*Sec[c + d*x]*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(35*b
*d) + (2*C*Sec[c + d*x]^2*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(7*d)

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(-2*(A*b - a*B)*Rt[a + (b*B)/A, 2]*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Cs
c[e + f*x]))/(a - b))]*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + (b*B)/A, 2]], (a*A + b*B)/(a*A - b*B)]
)/(b^2*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4005

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[(Csc[e + f*x]*(1 +
 Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rule 4031

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> -Simp[(B*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1))/(f*(m + n
)), x] + Dist[d/(m + n), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n - 1)*Simp[a*B*(n - 1) + (b*B*(m
+ n - 1) + a*A*(m + n))*Csc[e + f*x] + (a*B*m + A*b*(m + n))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e,
f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && LtQ[0, m, 1] && GtQ[n, 0]

Rule 4072

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(
x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.), x_Symbol] :> Dist[1/b^2, Int[(a + b*Csc[e + f*x])
^(m + 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 4082

Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_
.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(C*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1))/(b*f*(m
+ 2)), x] + Dist[1/(b*(m + 2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*A*(m + 2) + b*C*(m + 1) + (b*B*
(m + 2) - a*C)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 4092

Int[csc[(e_.) + (f_.)*(x_)]^2*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(
e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(C*Csc[e + f*x]*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m
 + 1))/(b*f*(m + 3)), x] + Dist[1/(b*(m + 3)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[a*C + b*(C*(m + 2)
 + A*(m + 3))*Csc[e + f*x] - (2*a*C - b*B*(m + 3))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m
}, x] && NeQ[a^2 - b^2, 0] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx &=\int \sec ^3(c+d x) \sqrt {a+b \sec (c+d x)} (B+C \sec (c+d x)) \, dx\\ &=\frac {2 C \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{7 d}+\frac {2}{7} \int \frac {\sec ^2(c+d x) \left (2 a C+\frac {1}{2} (7 a B+5 b C) \sec (c+d x)+\frac {1}{2} (7 b B+a C) \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=\frac {2 (7 b B+a C) \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{35 b d}+\frac {2 C \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{7 d}+\frac {4 \int \frac {\sec (c+d x) \left (\frac {1}{2} a (7 b B+a C)+\frac {1}{4} b (21 b B+23 a C) \sec (c+d x)+\frac {1}{4} \left (7 a b B-4 a^2 C+25 b^2 C\right ) \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{35 b}\\ &=\frac {2 \left (7 a b B-4 a^2 C+25 b^2 C\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{105 b^2 d}+\frac {2 (7 b B+a C) \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{35 b d}+\frac {2 C \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{7 d}+\frac {8 \int \frac {\sec (c+d x) \left (\frac {1}{8} b \left (49 a b B+2 a^2 C+25 b^2 C\right )-\frac {1}{8} \left (14 a^2 b B-63 b^3 B-8 a^3 C-19 a b^2 C\right ) \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{105 b^2}\\ &=\frac {2 \left (7 a b B-4 a^2 C+25 b^2 C\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{105 b^2 d}+\frac {2 (7 b B+a C) \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{35 b d}+\frac {2 C \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{7 d}-\frac {\left (14 a^2 b B-63 b^3 B-8 a^3 C-19 a b^2 C\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{105 b^2}+\frac {\left (8 \left (\frac {1}{8} b \left (49 a b B+2 a^2 C+25 b^2 C\right )+\frac {1}{8} \left (14 a^2 b B-63 b^3 B-8 a^3 C-19 a b^2 C\right )\right )\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{105 b^2}\\ &=\frac {2 (a-b) \sqrt {a+b} \left (14 a^2 b B-63 b^3 B-8 a^3 C-19 a b^2 C\right ) \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{105 b^4 d}+\frac {2 (a-b) \sqrt {a+b} \left (b^2 (63 B-25 C)+a b (14 B-6 C)-8 a^2 C\right ) \cot (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{105 b^3 d}+\frac {2 \left (7 a b B-4 a^2 C+25 b^2 C\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{105 b^2 d}+\frac {2 (7 b B+a C) \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{35 b d}+\frac {2 C \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{7 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 22.78, size = 655, normalized size = 1.65 \[ \frac {\sqrt {a+b \sec (c+d x)} \left (\frac {2 \sec (c+d x) \left (-4 a^2 C \sin (c+d x)+7 a b B \sin (c+d x)+25 b^2 C \sin (c+d x)\right )}{105 b^2}+\frac {2 \left (8 a^3 C-14 a^2 b B+19 a b^2 C+63 b^3 B\right ) \sin (c+d x)}{105 b^3}+\frac {2 \sec ^2(c+d x) (a C \sin (c+d x)+7 b B \sin (c+d x))}{35 b}+\frac {2}{7} C \tan (c+d x) \sec ^2(c+d x)\right )}{d}-\frac {2 \sqrt {\frac {1}{1-\tan ^2\left (\frac {1}{2} (c+d x)\right )}} \sqrt {a+b \sec (c+d x)} \left (-b (a+b) \left (8 a^2 C-2 a b (7 B+3 C)+b^2 (63 B+25 C)\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (\tan ^2\left (\frac {1}{2} (c+d x)\right )+1\right ) \sqrt {\frac {-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b \tan ^2\left (\frac {1}{2} (c+d x)\right )+b}{a+b}} F\left (\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )+\left (8 a^3 C-14 a^2 b B+19 a b^2 C+63 b^3 B\right ) \tan \left (\frac {1}{2} (c+d x)\right ) \left (\tan ^2\left (\frac {1}{2} (c+d x)\right )-1\right ) \left (a \left (\tan ^2\left (\frac {1}{2} (c+d x)\right )-1\right )-b \left (\tan ^2\left (\frac {1}{2} (c+d x)\right )+1\right )\right )+(a+b) \left (8 a^3 C-14 a^2 b B+19 a b^2 C+63 b^3 B\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (\tan ^2\left (\frac {1}{2} (c+d x)\right )+1\right ) \sqrt {\frac {-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b \tan ^2\left (\frac {1}{2} (c+d x)\right )+b}{a+b}} E\left (\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )\right )}{105 b^3 d \left (\tan ^2\left (\frac {1}{2} (c+d x)\right )+1\right )^{3/2} \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b} \sqrt {\frac {-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b \tan ^2\left (\frac {1}{2} (c+d x)\right )+b}{\tan ^2\left (\frac {1}{2} (c+d x)\right )+1}}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sec[c + d*x]^2*Sqrt[a + b*Sec[c + d*x]]*(B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(-2*Sqrt[a + b*Sec[c + d*x]]*Sqrt[(1 - Tan[(c + d*x)/2]^2)^(-1)]*((a + b)*(-14*a^2*b*B + 63*b^3*B + 8*a^3*C +
19*a*b^2*C)*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*
x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - b*(a + b)*(8*a^2*C - 2*a*b*(7*B
 + 3*C) + b^2*(63*B + 25*C))*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]
*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + (-14*a^2*b*B +
 63*b^3*B + 8*a^3*C + 19*a*b^2*C)*Tan[(c + d*x)/2]*(-1 + Tan[(c + d*x)/2]^2)*(a*(-1 + Tan[(c + d*x)/2]^2) - b*
(1 + Tan[(c + d*x)/2]^2))))/(105*b^3*d*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(1 + Tan[(c + d*x)/2]^2)^(3
/2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(1 + Tan[(c + d*x)/2]^2)]) + (Sqrt[a + b*Sec[c
+ d*x]]*((2*(-14*a^2*b*B + 63*b^3*B + 8*a^3*C + 19*a*b^2*C)*Sin[c + d*x])/(105*b^3) + (2*Sec[c + d*x]^2*(7*b*B
*Sin[c + d*x] + a*C*Sin[c + d*x]))/(35*b) + (2*Sec[c + d*x]*(7*a*b*B*Sin[c + d*x] - 4*a^2*C*Sin[c + d*x] + 25*
b^2*C*Sin[c + d*x]))/(105*b^2) + (2*C*Sec[c + d*x]^2*Tan[c + d*x])/7))/d

________________________________________________________________________________________

fricas [F]  time = 0.66, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (C \sec \left (d x + c\right )^{4} + B \sec \left (d x + c\right )^{3}\right )} \sqrt {b \sec \left (d x + c\right ) + a}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^4 + B*sec(d*x + c)^3)*sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )} \sqrt {b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))*sqrt(b*sec(d*x + c) + a)*sec(d*x + c)^2, x)

________________________________________________________________________________________

maple [B]  time = 2.67, size = 3438, normalized size = 8.66 \[ \text {output too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2*(B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x)

[Out]

-2/105/d*(1+cos(d*x+c))^2*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))^2*(25*C*cos(d*x+c)^4*(cos(d*x+c)
/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-
b)/(a+b))^(1/2))*sin(d*x+c)*b^4-8*C*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*
x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^4+25*C*cos(d*x+c)^3*
(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(
d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*b^4-8*C*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c)
)/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^4-28*B*co
s(d*x+c)^2*a*b^3+63*B*cos(d*x+c)^4*b^4+63*B*cos(d*x+c)^5*a*b^3-14*B*cos(d*x+c)^4*a^2*b^2+7*B*cos(d*x+c)^3*a^2*
b^2+14*B*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/
2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^3*b-15*C*b^4-63*B*sin(d*x+c)*cos(d*x+c)^4*(cos(
d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c
),((a-b)/(a+b))^(1/2))*b^4+63*B*sin(d*x+c)*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1
+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^4-63*B*sin(d*x+c)*cos(d*
x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c
))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^4+63*B*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*co
s(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^4+8*C*cos(d*
x+c)^4*a^3*b-20*C*cos(d*x+c)^4*a^2*b^2+19*C*cos(d*x+c)^4*a*b^3-4*C*cos(d*x+c)^3*a^3*b-26*C*cos(d*x+c)^3*a*b^3+
C*cos(d*x+c)^2*a^2*b^2-18*C*cos(d*x+c)*a*b^3-4*C*cos(d*x+c)^5*a^3*b+19*C*cos(d*x+c)^5*a^2*b^2+25*C*cos(d*x+c)^
5*a*b^3+14*B*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))
^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b^2-63*B*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x
+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(
(a-b)/(a+b))^(1/2))*a*b^3-14*B*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+
cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b^2+49*B*sin(d*x+c)*cos
(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*
x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^3+14*B*sin(d*x+c)*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b
+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^3*b+14*
B*sin(d*x+c)*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*Elli
pticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b^2+25*C*cos(d*x+c)^4*b^4-10*C*cos(d*x+c)^2*b^4+8*C*
cos(d*x+c)^5*a^4-8*C*cos(d*x+c)^4*a^4-14*B*cos(d*x+c)^5*a^3*b+7*B*cos(d*x+c)^5*a^2*b^2+14*B*cos(d*x+c)^4*a^3*b
-35*B*cos(d*x+c)^4*a*b^3-42*B*cos(d*x+c)^3*b^4-21*B*cos(d*x+c)*b^4-63*B*sin(d*x+c)*cos(d*x+c)^4*(cos(d*x+c)/(1
+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/
(a+b))^(1/2))*a*b^3-14*B*sin(d*x+c)*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*
x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b^2+49*B*sin(d*x+c)*cos(d*x+c
)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/
sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^3+8*C*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+
cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^3*b+2*C*cos(d*
x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c
))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2*b^2+19*C*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+
a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)
*a*b^3-8*C*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*Ellipt
icE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^3*b-19*C*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+
c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1
/2))*sin(d*x+c)*a^2*b^2-19*C*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(
a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b^3+8*C*cos(d*x+c)^3*(cos(d
*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c)
,((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^3*b+2*C*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1
+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2*b^2+19*C*co
s(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d
*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b^3-8*C*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b
+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c
)*a^3*b-19*C*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*Elli
pticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2*b^2-19*C*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(
d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b)
)^(1/2))*sin(d*x+c)*a*b^3)/(b+a*cos(d*x+c))/cos(d*x+c)^3/sin(d*x+c)^5/b^3

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )} \sqrt {b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))*sqrt(b*sec(d*x + c) + a)*sec(d*x + c)^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\left (\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}}{{\cos \left (c+d\,x\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((B/cos(c + d*x) + C/cos(c + d*x)^2)*(a + b/cos(c + d*x))^(1/2))/cos(c + d*x)^2,x)

[Out]

int(((B/cos(c + d*x) + C/cos(c + d*x)^2)*(a + b/cos(c + d*x))^(1/2))/cos(c + d*x)^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (B + C \sec {\left (c + d x \right )}\right ) \sqrt {a + b \sec {\left (c + d x \right )}} \sec ^{3}{\left (c + d x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2*(B*sec(d*x+c)+C*sec(d*x+c)**2)*(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral((B + C*sec(c + d*x))*sqrt(a + b*sec(c + d*x))*sec(c + d*x)**3, x)

________________________________________________________________________________________